Cosmogenic exposure dating of glacial boulders is commonly used to estimate the timing of past glaciations because the method enables direct dating of the duration a boulder has been exposed to cosmic rays. For successful dating, the boulders must have been fully shielded from cosmic rays prior to deposition and continuously exposed to cosmic rays ever since. A common assumption is that boulder height (the distance between the top of the boulder and the surrounding surface) is important, and that tall boulders are more likely to have been continuously exposed to cosmic rays than short boulders and therefore yield more accurate exposure ages. Here we test this assumption based on exposure age clustering for groups of glacial boulders (and single cobbles) 10Be exposure ages that have recorded boulder heights (3741 boulders; 579 boulder groups with ≥3 boulders). Of the full set of boulder groups with ≥3 boulders, 21% fulfill a reduced chi square criterion ($\chi^2_{R} < 2$) for well-clustered exposure ages. For boulder groups containing only tall boulders, the fraction of well-clustered exposure age groups is consistently larger. Moreover, this fraction of well-clustered exposure age groups increases with the minimum boulder height in each group. This result confirms the common assumption that tall boulders are generally better targets for cosmogenic exposure dating compared to short boulders. Whereas the tall boulder groups have a significantly larger fraction of well-clustered exposure age groups, there is nonetheless a dominant fraction (>50%) of the boulder groups with scattered exposure ages, highlighting the problem with prior and incomplete exposure for cosmogenic dating of glacial boulders.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cosmogenic exposure dating has become a key tool for glacial chronology studies, and exposure ages from formerly glaciated environments have been reported from all continents. Under ideal conditions, cosmogenic exposure dating can accurately and precisely yield the timing of glacial deposition or deglaciation, which can yield important data for paleoclimate reconstructions. More specifically, the samples must have been fully shielded from cosmic rays prior to glaciation (no prior exposure) and continuously exposed to the cosmic ray flux ever since deglaciation (no incomplete exposure). A major problem with cosmogenic exposure dating of glacial deposits is that samples often have experienced some prior and/or incomplete exposure, resulting in too-old or too-young exposure ages, respectively (Heyman et al., 2011b). Several processes and conditions can lead to prior exposure and incomplete exposure. Prior exposure can be the result of limited glacial erosion, leaving previously exposed surfaces intact, or the glacier picking up and depositing material that was previously exposed to cosmic rays at the ground surface or at shallow depths. Incomplete exposure can be the result of multiple processes leading to a shielding history of the present-day surface under sediments, snow, water, or bedrock. A common strategy to evaluate whether prior and/or incomplete exposure has affected the samples is to date multiple samples from each single site. Scattered exposure ages in single-site sample groups are typically interpreted to reflect prior and/or incomplete exposure; well-clustered exposure ages are typically interpreted as yielding the actual deglaciation age (Balco, 2011).
Perhaps the most common strategy for cosmogenic dating of glacial landforms is to date samples from the top of glacially transported boulders located on moraines or in the open landscape. Glacially transported boulders are ubiquitous in formerly glaciated regions and their importance for understanding glacier expansion has been recognized since the early days of palaeoglaciology (Fig. 1; Charpentier, 1841). Because glacial boulders have potentially been plucked, crushed, and abraded, the risk of prior exposure is often lower than for bedrock samples. This has been shown for regions of the Fennoscandian and Laurentide ice sheets preserved under non-erosive ice with significantly less prior exposure in boulders compared to bedrock surfaces (Fabel et al., 2002; Briner et al., 2006; Goehring et al., 2008). Regarding incomplete exposure, two main processes for glacial boulders are landscape degradation, leading to exhumation of boulders through sediments, and toppling, bringing previously shielded boulder surfaces to the top (Hallet and Putkonen, 1994; Putkonen and Swanson, 2003; Applegate et al., 2010, 2012; Heyman et al., 2011b). For both of these processes (and also for snow coverage), sampling of large boulders that protrude well above the surrounding surface should theoretically reduce the risk of incomplete exposure as a large and tall boulder is more likely to have evaded coverage by sediment and has likely been more stable than a small boulder. Hence, a common strategy for cosmogenic dating of glacial boulders is to choose the largest and tallest boulders for sample collection and boulder size/height is often used as a sampling criterion (e.g. Gosse et al., 1995; Kaplan et al., 2004; Kerschner et al., 2006; Applegate and Alley, 2011; Houmark-Nielsen et al., 2012; Lifton et al., 2014a; Nývlt et al., 2014; Bromley et al., 2015; Corbett et al., 2015; Doughty et al., 2015).

The influence of boulder size on exposure age has been investigated in some local studies (Blard et al., 2007; Briner, 2009), but this has not been attempted for larger datasets. To fill this gap, we present a comprehensive compilation of 10Be exposure ages from glacial boulders that also include data on boulder height (the distance between the top of the boulder and the surrounding surface). The objective is to test the common assumption that tall boulders yield more accurate exposure ages, and to evaluate the potential effect of boulder height on exposure age.

2. Methods

2.1. Data compilation

We have compiled boulder height and 10Be exposure age data for glacial boulders (Table 1) with some additional data derived from communication with the original authors. Included are all glacial boulders and single clast cobbles with 10Be and boulder/cobble height data (Fig. 2). We include single clast cobbles under the boulder umbrella because the size criterion for differentiating cobbles from boulders is applied somewhat arbitrarily and in many publications remain not well-defined. Obvious data errors, including mistaken coordinates and 10Be concentrations with incorrect exponents, have been corrected. For samples with no reported density, we assume a density of 2.65 g cm$^{-3}$. For samples located in mountain regions and lacking topographic shielding data, we have calculated topographic shielding factors from 30 to 90 m resolution elevation models based on Codilean (2006) and Li (2013). Year of sampling (used in the exposure age calculation to adjust the time-dependent spallation production rate) is based on sample names and information in the source publication if available, and is otherwise assumed to be two years before publication. All sample data is available in the Supplementary Dataset.

To calculate zero erosion exposure ages, we use a modified version of the CRONUS calculator (Balco et al., 2008) code, with 10Be production based on the nuclide-specific LSD spallation and muon production rate scaling (Lifton et al., 2014b) and the muon production parameterization of Phillips et al. (2016a). We use a reference 10Be spallation production rate of 3.98 ± 0.17 atoms g$^{-1}$ yr$^{-1}$, based on a global compilation of 22 well-clustered 10Be production rates (Supplementary Fig. S1; Supplementary Dataset). This reference production rate matches well with the nuclide-specific LSD scaling reference production rates of Shakun et al. (2015) (4.0 ± 0.1 atoms g$^{-1}$ yr$^{-1}$) and Phillips et al. (2016a) (3.92 ± 0.31 atoms g$^{-1}$ yr$^{-1}$), based on subsets of the data used here for production rate calibration. Using a global average reference production rate instead of locally calibrated reference production rates (cf. Balco et al., 2009) can yield some differences in the actual exposure ages but it will not affect the exposure age clustering of single site samples. More detailed information on the exposure age calculation and the production rate calibration is presented in the Supplementary Information. Because we are primarily interested in comparing exposure ages of multiple boulders from single sites with minor production rate variation we calculate and use internal exposure age uncertainties not including the production rate uncertainty (Balco et al., 2008). The code (Octave/ Matlab) used for exposure age calculation is provided as supplementary material.

All 10Be measurements (n = 3831) have been organized in 3741 numbered samples (including 134 cobbles) with repeat

Fig. 1. (a) A large boulder in Pierre des Marmettes, Rhône Valley, Switzerland, recognized as a glacial erratic boulder by Charpentier (1841). This image is in the public domain. (b) Sampling of a tall boulder (boulder height of 4 m) for cosmogenic dating of a moraine in Tian Shan (Lifton et al., 2014a; sample INK-01B).
measurements of samples from single boulders given the same sample number. For boulders with multiple ¹⁰Be measurements we determine an error-weighted exposure age and uncertainty. All samples have been organized in numbered groups (n = 1180), with each group including boulders from one location with an expected single deglaciation age. Typical groups of samples consist of boulders collected from one moraine ridge, or boulders located in a confined region that is assumed to yield a single deglaciation age. The extent of these confined regions ranges from hundreds of meters for boulders deposited by small glaciers to 10–15 km for boulders deposited by retreating ice sheets. Fig. 3 presents the number of sample locations with a given boulder group size (number of boulders).
2.2. Data analysis

As a measure of boulder group exposure age quality, we use exposure age clustering, assuming that groups of well-clustered exposure ages contain high-quality exposure ages free from prior exposure and incomplete exposure errors. For all boulder groups with a minimum of three samples \(n = 579 \) we calculate the reduced chi square value \(\chi^2_R \) as a measure of clustering:

\[
\chi^2_R = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{t_i - \bar{t}}{\sigma_i} \right)^2
\]

where \(n \) is the number of boulders in the boulder group, \(t_i \) is an individual boulder exposure age, \(\bar{t} \) is the boulder group mean exposure age, and \(\sigma_i \) is the individual boulder exposure age uncertainty. The reduced chi square value increases with exposure age scatter and a value close to 1 is expected for a group of exposure ages with a scatter caused only by the measurement uncertainty (cf. Balco, 2011). We use a cut-off value of 2 to differentiate well-clustered \(\chi^2_R < 2 \) from scattered \(\chi^2_R \geq 2 \) exposure age groups. Using a constant reduced chi square cut-off value honors the group size (number of individual boulders per group), because the probability for a group of exposure ages with an age scatter caused only by the measurement uncertainty increases with group size. Supplementary Fig. S2 illustrates the significance of group size and shows that the probability to fulfill \(\chi^2_R < 2 \) for groups of three, five, and eight exposure ages drawn from one Gaussian distribution are 86%, 91%, and 95%, respectively. To investigate the influence of boulder height on exposure age quality, we first organize sub-sets of the boulder groups by boulder height, using boulder height cut-off values ranging from 20 cm to 300 cm and selecting all boulders above or at a boulder height cut-off value (tall groups) and all boulders below this boulder height cut-off value (short groups), still requiring a minimum of three boulders per group. We then quantify the fraction of boulder groups with \(\chi^2_R < 2 \) (well-clustered) for both the tall and the short groups for all boulder height cut-off values (adopting increments of 20 cm). To evaluate the effects on exposure age quality of prior exposure and incomplete exposure in relation to boulder height, we calculate the age ratio between the excluded short/tall boulders and the average group exposure age of the remaining tall/short boulders for all well-clustered \(\chi^2_R < 2 \) tall/short exposure age groups that have scattered \(\chi^2_R \geq 2 \) exposure ages before excluding the short/tall boulders (Supplementary Fig. S3).

If indeed tall boulders generally yield more accurate exposure ages, as suggested and implied in many papers, we expect that a larger fraction of the tall boulder groups should have well-clustered exposure ages. If this is true and the reason is that short boulders are more likely to have been shielded from cosmic rays since deposition, we expect that the short boulders excluded from the well-clustered tall boulder exposure age groups should be

Fig. 2. Map showing the location of all boulders with recorded \(^{10}\)Be exposure ages and boulder heights included in the compilation.

Fig. 3. Number of boulder groups against number of individual boulders per boulder group. There are 579 boulder groups with at least three individual boulders included in the analysis of exposure age clustering (Figs. 4–7).
dominated by exposure ages younger than the associated tall boulder mean exposure ages.

3. Results

The dated boulders and cobbles have reported heights ranging from 0 to 1000 cm with a median of 100 cm and 50% of the boulders residing in the 60–160 cm interval. The exposure ages range from 22 to 2.3×10^6 years with a median of 18 ka and 50% of the exposure ages falling in the 13 to 27 ka interval (Fig. 4). For boulders taller than 100 cm, 50% of the exposure ages range from 13 ka to 24 ka, while for boulders shorter than 100 cm the fraction of older exposure ages increases with shorter boulders. Fig. 5 shows the

Fig. 4. Exposure age versus boulder height for the full set of individual glacial boulders in the compilation. The black symbols (circles and lines) show the median exposure age and interquartile range for the boulders with boulder heights in the range 0–300 cm divided into 15 intervals of 20 cm. The gray box and whisker plots summarize the exposure age and boulder height data for the full dataset. Note that the exposure age data is shown with a logarithmic scale in the left panel but with a linear scale in the right panel.

Fig. 5. Exposure age reduced chi square value (χ^2_R) versus mean exposure age for all boulder groups with at least three individual boulders shown in a log–log graph. The black symbols (circles and lines) show the median reduced chi square value and interquartile range for boulder group mean exposure ages with intervals of 5 ka for the range 0–30 ka, and with intervals of 20 ka for the range 30–110 ka. The gray box and whisker plots summarize the reduced chi square and mean exposure age data for the full dataset. The dashed horizontal line marks the reduced chi square value ($\chi^2_R = 2$) used to differentiate the well-clustered from the scattered exposure age groups.

boulder group χ^2_R values versus mean exposure age. The time range with the most and largest fraction of well-clustered boulder exposure age groups is 10–15 ka. Hence, boulder groups with both older and younger mean exposure ages show more scatter.

For the full boulder group dataset (n = 579), across the range of boulder heights, only 21% of the boulder groups are well-clustered with $\chi^2_R < 2$ (Fig. 6). The tall boulder groups, with all boulders equal to or taller than a boulder height cut-off value, consistently have a larger ratio of well-clustered exposure ages than the short boulder groups. For the tall boulder groups, the ratio of well-clustered exposure age groups increases from 21% for boulders ≥ 20 cm to 34% for boulders ≥ 160 cm. For the short boulder groups, the ratio of well-clustered exposure age groups ranges from 16% to 20% for boulders < 80 cm and becomes as low as 10% for boulders < 60 cm.

Fig. 7 shows the summed probability density distribution of the exposure age ratio between the excluded short boulders and the well-clustered tall boulder group mean exposure ages (red curves) and the exposure age ratio between the excluded tall boulders and well-clustered short boulder group mean exposure ages (blue curves) for boulder height cut-off values of 80–140 cm. The excluded boulders are those for which exposure age groups change from scattered to well-clustered when excluded, and thus, this figure shows the tendency for outlier boulders to be affected by incomplete exposure (too young) or prior exposure (too old). For the excluded short boulders, there is an overweight for incomplete exposure (younger excluded boulder than well-clustered group mean exposure age) with 57–69% of the summed probability for boulder height cut-off values of 80–140 cm. For the excluded tall boulders, the exposure age ratio of the well-clustered short boulder group mean exposure age is more evenly distributed with 40–54% of the summed probability due to incomplete exposure for boulder height cut-off values of 80–140.

4. Discussion

Based on the boulder group exposure age clustering, the prediction that tall boulders should yield higher quality exposure ages is confirmed by the larger fraction of well-clustered exposure ages for the tall boulder groups (Fig. 6). The tall boulder groups have larger fractions of well-clustered exposure ages across all
boulder height cut-off values than the short boulder groups or boulder groups including all boulder heights. Similarly, the short boulder groups have a consistently lower fraction of well-clustered exposure ages confirming a somewhat lower quality (more scatter) of derived exposure ages. For both the tall boulders and the short boulders, the fraction of well-clustered exposure age groups tends to increase with increasing boulder height cut-off values, supporting the prediction that taller boulders should yield higher quality exposure ages. In particular, the data shows a linear increase of the fraction of well-clustered tall boulder groups for boulder height cut-off values between 20 and 160 cm (Fig. 6).

For the short boulders which when included yield scattered boulder group exposure ages and when excluded result in well-clustered exposure ages, there is a tendency for exposure ages to be younger than the tall boulders from the same boulder group (Fig. 7). This indicates a tendency for incomplete exposure dominating over prior exposure for these short boulders, in line with the common assumption that short boulders have been more prone to shielding from cosmic rays since deposition. The young exposure ages of the excluded short boulders contrast with the general tendency of a larger fraction of old exposure ages amongst short boulders (Fig. 4). This further strengthens the interpretation that short boulders are more prone to incomplete exposure. For tall boulders which when included yield scattered boulder group exposure ages and when excluded result in well-clustered exposure ages, there is no clear tendency for incomplete exposure or prior exposure (Fig. 7).

For the short boulders which when included yield scattered boulder group exposure ages and when excluded result in well-clustered exposure ages, there is a tendency for exposure ages to be younger than the tall boulders from the same boulder group (Fig. 7). This indicates a tendency for incomplete exposure dominating over prior exposure for these short boulders, in line with the common assumption that short boulders have been more prone to shielding from cosmic rays since deposition. The young exposure ages of the excluded short boulders contrast with the general tendency of a larger fraction of old exposure ages amongst short boulders (Fig. 4). This further strengthens the interpretation that short boulders are more prone to incomplete exposure. For tall boulders which when included yield scattered boulder group exposure ages and when excluded result in well-clustered exposure ages, there is no clear tendency for incomplete exposure or prior exposure (Fig. 7). However, the 60% summed probability in the prior exposure domain for the excluded short boulders ≥140 cm could possibly be interpreted as a result of supraglacial transportation of large boulders yielding prior exposure, as suggested by Darvill et al.

Fig. 6. Number of boulder groups (upper graph) with at least three individual boulders and fraction of well-clustered exposure age groups (lower graph) for tall (red) and short (blue) boulder groups defined by boulder height cut-off values ranging from 20 cm to 300 cm. The horizontal dashed lines show the full number of boulder groups (upper graph) and the fraction of well-clustered boulder groups of the full boulder group dataset (lower graph). See Section 2.2 for a complete explanation of the analysis. Supplementary Fig. S4 shows data for the same analysis but requiring a minimum group size of five individual boulders. Supplementary Fig. S5 shows data for the same analysis but only including boulder samples (excluding cobble samples). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Summed probability density curves for the exposure age ratio of excluded individual short/tall (red/blue) boulders divided by the well-clustered mean age of the remaining tall/short boulders for boulder height cut-off values of 80–140 cm. Only boulders that yield scattered exposure ages (χ² ≥ 2) when included in boulder groups but for which, when excluded, the remaining boulders yield well-clustered exposure ages (χ² < 2) are included in the probability density curves. The red and blue values by the dashed arrows show ratios of the integrated summed probability below and above 1.0 for the excluded short and tall boulders. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The better clustering of the tall boulder group exposure ages is a clear and strong argument that, on average, tall boulders yield higher quality exposure ages. The increasing fraction of well-clustered exposure ages with increasing boulder height cut-off values shows that short boulders are more likely to have been shielded. In the present study we focus exclusively on boulder height and we therefore disregard other factors that could affect the exposure histories of the analyzed samples. It is possible that if more factors were taken into account (such as sample location or the nature of the substrate – is the boulder rooted in sediments or resting on bedrock?) the outcome could differ. However, the difference between the tall and the short boulders in terms of the fraction of well-clustered exposure age groups (Fig. 6) is clear enough to support the assertion that exposure ages from tall boulders are more likely to be correct than exposure ages from short boulders.

While tall boulders are clearly better clustered than short boulders, a large fraction of the tall boulder groups still yield scattered exposure ages, and thus collecting only tall boulders will not guarantee well-clustered exposure ages. Even for boulder heights equal to or in excess of 160 cm, only 36% of the boulder groups display well-clustered exposure ages (Fig. 5; Supplementary Dataset). Several processes and conditions can result in erroneous exposure ages through prior exposure or incomplete exposure, and excluding short boulders will only reduce some of the incomplete exposure problems. A major factor for the likelihood to obtain well-clustered exposure ages appears to be the age of the deposit (cf. Brown et al., 2005) as shown in Fig. 5. For boulder groups with mean exposure ages between 10 and 15 ka, 42% are well-clustered, while only 3% (4 out of 148) of the boulder groups with mean exposure ages older than 30 ka are well-clustered.

5. Conclusions

Based on a global compilation of glacial boulder 10Be exposure ages and recorded boulder heights, we conclude that:

- Groups of tall boulders more often yield well-clustered high-quality exposure ages than groups of short boulders or groups including short boulders. The fraction of well-clustered exposure ages increases with boulder height cut-off values up to 160 cm. These data confirm the common assumption that tall boulders are more likely to have escaped post-glacial shielding and that tall boulders are therefore more likely to yield accurate exposure ages than short boulders.

- While groups of tall boulders often yield better clustered exposure ages, sampling only tall boulders does not resolve all issues with exposure age scatter due to prior and incomplete exposure. Even for groups of only tall boulders there is a large fraction of groups with scattered exposure ages. In particular, boulder groups with old exposure ages (>30 ka) are very rarely well-clustered.

Acknowledgments

We thank Vincent Rinterknecht and one anonymous reviewer for helpful reviews.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.quageo.2016.03.002.

Shakun, J.D., Clark Jr., P.I., He, F., Lutfon, N.A., Liu, Z.Y., Otto-Blesener, B.L., 2015. Regional and global forcing of glacier retreat during the last deglaciation. Nat. Commun. 6, 8059.

Strasky, S., Oberholzer, P., Meyer, K.-D., Baur, H., Ivy-Ochs, S., Kubik, P.W., Wieser, R.,