Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages

Jakob Heyman a,⁎, Arjen P. Stroeven a, Jonathan M. Harbor b, Marc W. Caffee c

a Department of Physical Geography and Quaternary Geology, Stockholm University, 10691 Stockholm, Sweden
b Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907-1397, USA
c Department of Physics, Purdue Rare Isotope Measurement Laboratory, Purdue University, West Lafayette, IN 47907-1397, USA

A R T I C L E I N F O
Article history:
Received 29 April 2010
Received in revised form 23 November 2010
Accepted 24 November 2010
Available online 28 December 2010

Editor: T.M. Harrison

Keywords:
cosmogenic nuclides
exposure age interpretation
prior exposure
incomplete exposure
glacial chronology
deglaciation

A B S T R A C T
Cosmogenic exposure dating has greatly enhanced our ability to define glacial chronologies spanning several global cold periods, and glacial boulder exposure ages are now routinely used to constrain deglaciation ages. However, exposure dating involves assumptions about the geological history of the sample that are difficult to test and yet may have a profound effect on the inferred age. Two principal geological factors yield erroneous inferred ages: exposure prior to glaciation (yielding exposure ages that are too old) and incomplete exposure due to post-depositional shielding (yielding exposure ages that are too young). Here we show that incomplete exposure is more important than prior exposure, using datasets of glacial boulder 10Be exposure ages from the Tibetan Plateau (1420 boulders), Northern Hemisphere palaeo-ice sheets (631 boulders), and present-day glaciers (208 boulders). No boulders from present-day glaciers and few boulders from the palaeo-ice sheets have exposure ages significantly older than independently known deglaciation ages, indicating that prior exposure is of limited importance. Further, while a simple post-depositional landform degradation model can predict the exposure age distribution of boulders from the Tibetan Plateau, a prior exposure model fails, indicating that incomplete exposure is important. The large global dataset demonstrates that, in the absence of other evidence, glacial boulder exposure ages should be viewed as minimum limiting deglaciation ages.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The last few million years of Earth’s history have included dramatic environmental changes associated with the growth and decay of glaciers and ice sheets (Ehlers and Gibbard, 2007). Beyond the global Last Glacial Maximum (LGM) at c. 20 ka, reconstructions of glacier and ice sheet chronologies rely heavily on cosmogenic nuclide measurements (e.g. Hein et al., 2009; Linge et al., 2006; Owen et al., 2006a). The application of cosmogenic exposure methodology has helped resolve a number of longstanding chronological and process debates in palaeoglaciology, including refuting the existence of an LGM Tibetan ice sheet (e.g. Owen et al., 2008) and demonstrating the ability of cold-based ice sheets to preserve even delicate pre-glacial landscape features (e.g. Briner et al., 2003, 2006a; Stroeven et al., 2002). However, the accuracy of cosmogenic exposure dating is limited by the basic physical principles of the method (Fabel and Harbor, 1999; Gosse and Phillips, 2001; Lal, 1991) and geological uncertainty (Briner et al., 2005a; Hallet and Putkonen, 1994; Putkonen and Swanson, 2003; Zech et al., 2005b).

Cosmogenic exposure dating is based on the principle that cosmogenic nuclides accumulate in the upper c. 3–5 m of Earth’s surface as a result of bombardment by cosmic rays (Gosse and Phillips, 2001; Lal, 1991). Given nuclide-specific rates of cosmogenic nuclide accumulation, which are known to vary spatially and temporally (Balco et al., 2008; Gosse and Phillips, 2001; Owen et al., 2008), it is possible to convert measured concentrations into “apparent” exposure ages. The ages are considered apparent rather than definitive primarily because of the unknown geologic history of the sample, which includes the effects of prior exposure (inheritance) and incomplete exposure due to post-depositional shielding from cosmic rays (Applegate et al., 2010; Fabel and Harbor, 1999; Hallet and Putkonen, 1994; Putkonen and Swanson, 2003).

Samples used for exposure dating are typically taken from large boulders at the surface of glacial deposits (often moraines, i.e. ridges marking the maximum extent of glaciers and ice sheets). The ideal boulder has no inheritance and has resided at the surface since deglaciation (Fig. 1). Prior exposure to cosmic rays produces additional cosmogenic nuclides, an “inherited” component, yielding an apparent exposure age exceeding the deposition age. Incomplete exposure due to shielding, caused by burial and subsequent exhumation, results in reduced cosmogenic nuclide concentrations and yield apparent exposure ages understimating the deposition age. Both prior exposure and incomplete exposure have been proposed as.
interpretation scenarios for glacial boulders, resulting in the possibility of radically different exposure age interpretations (cf. Applegate et al., 2007; Barrows et al., 2007; Brown et al., 2005; Chevalier et al., 2005). Quantification of these geological effects on exposure ages has been based on numerical modelling (Applegate et al., 2010; Hallet and Putkonen, 1994; Putkonen and Swanson, 2003) and detailed field studies (Briner et al., 2005a; Davis et al., 1999). However, only limited attempts exist to reconcile models and measurements (cf. Briner et al., 2006a; Putkonen and O’Neal, 2006; Putkonen and Swanson, 2003).

We here present a compilation of published glacial boulder 10Be exposure ages against which to test the prior exposure and incomplete exposure models. The comprehensive dataset of exposure ages comes from the Tibetan Plateau, areas formerly covered by the LGM Northern Hemisphere ice sheets, and present-day glaciers and recent moraines world-wide (Fig. 2; Table 1; Supplementary Dataset). The properties of these three glacial boulder datasets in terms of the inherent variety and quality of glacial histories and subglacial conditions (cold-based, warm-based) offer an excellent opportunity to test the importance of prior exposure and post-glacial shielding on apparent exposure ages.

2. Methods

2.1. Data compilation

Data for calculating 10Be exposure ages were compiled from published literature (Table 1) and, where required, additional personal communication. Exposure ages were calculated using the CRONUS calculator (Balco et al., 2008; version 2.2; constants file version 2.2.1) applying a 10Be half-life of 1.387 Ma (Chmeleff et al., 2010; Korschinek et al., 2010) and reconciling measurements performed using various 10Be standards (Nishiizumi et al., 2007) thus enabling the comparison of data from multiple sources. Sample density for all samples without measured densities was set to 2.7 g cm$^{-3}$ (for CRONUS thickness shielding calculation). The erosion was set to zero for all samples and no scaling for post-glacial modification (such as burial by water or post-glacial uplift) was included. Thus, we calculate the apparent exposure ages assuming full and continuous post-glacial exposure in a geomorphologically inactive environment (Fig. 1a). Where multiple 10Be measurements from a single boulder were performed (mostly replicate measurements) the uncertainty-weighted average of the exposure ages has been used as single boulder age. All exposure ages reported here are from the CRONUS Lm production rate scaling (Balco et al., 2008) based on the production rate scaling from Lal (1991) and Stone (2000) with palaeomagnetic corrections following Nishiizumi et al. (1989). Changing the production rate scaling to another alters the individual exposure ages, in particular old exposure ages from the Tibetan Plateau (Supplementary Fig. S1), but not the overall exposure age pattern. The internal exposure age uncertainty, based on measurement uncertainty only (Balco et al., 2008), has an average of 4.5% with a maximum uncertainty of 36% for exposure ages >10 ka. Because we focus on the large-scale exposure age pattern, the uncertainties associated with the production rate scaling and 10Be measurements do not challenge our analysis. See Supplementary Dataset for complete CRONUS input and output.

To quantify geological uncertainties (Fig. 3), each boulder from the palaeo-ice sheet dataset was given a deglaciation age based on deglaciation reconstructions (Dyke et al., 2003; Gyllencreutz et al., 2007a,b; Kleman et al., 2010). Because the deglaciation reconstructions are largely based on radiocarbon constraints they provide a means of independent testing of the apparent exposure ages (Supplementary Figs. S2, S3). Considering the uncertainties of the deglaciation reconstructions and the exposure age calculations, all boulders were given assumed deglaciation ages rounded to the nearest thousand years (Supplementary Figs. S2, S3; Supplementary Dataset). For the British–Irish and Fennoscandian ice sheet areas
we have used the "probable" ice limit reconstruction from Gyllencreutz et al. (2007a,b). Extensive areas under the palaeo-ice sheets experienced cold-based non-erosive conditions (Kleman and Hättestrand, 1999), and such relict areas (cf. Goodfellow, 2007) are potential source regions for glacial boulders with most pronounced inheritance. We have classified all boulders in the palaeo-ice sheet dataset as either boulders located on relict surfaces, preserved under non-erosive ice ("relict boulders"; Supplementary Dataset). The classification is based primarily on published information but additional topographical analyses were performed for a few boulders.

Exposure ages from the Tibetan Plateau and the palaeo-ice sheet datasets were organized in groups (Supplementary Fig. S4) where each group represents a discrete glacial deposit with a certain deglaciation age (mostly single moraines), based on published information and boulder locations. The boulder exposure ages organized into groups of discrete glacial deposits allow assessment of the relative importance of prior exposure and incomplete exposure.

2.2. Exposure age simulation

To simulate the effect of prior exposure and incomplete exposure for the Tibetan Plateau boulder exposure age dataset, we developed two Monte Carlo exposure age models for multiples of all boulder groups (Supplementary Fig. S4) where each group represents a discrete glacial deposit with a certain deglaciation age (mostly single moraines), based on published information and boulder locations. The boulder exposure ages organized into groups of discrete glacial deposits allow assessment of the relative importance of prior exposure and incomplete exposure.

In the prior exposure model each boulder is exposed to cosmic rays prior to glacial erosion and deposition. Each boulder group is assigned a random duration of prior exposure between zero and a maximum value, implying that all boulders from a certain group were derived from a landscape with the same exposure history. However, before erosion and entrainment by ice, each individual sample is assigned a random depth beneath the bedrock surface between zero and a maximum depth. The prior exposure for these boulders is therefore a function of the landscape exposure history and the depth beneath the surface from which they were mined. Calculation of the apparent exposure age acquired prior to deposition is based on the depth-dependent 10Be production rate due to spallation (Lal, 1991) and muon interaction (Granger and Smith, 2000), assuming a bedrock density of 2.7 g cm$^{-3}$. Each boulder group is assigned a random deglaciation (deposition) age which is added to the prior exposure component. The random deglaciation age varies between 0 and 250 ka, thus reflecting the range of measured boulder group minimum exposure ages (Fig. 4a). The duration of glaciation (period of shielding) between bedrock erosion and boulder deposition is assumed to be short-lived in comparison with the 10Be half-life (1.387 Ma) and 10Be decay during ice burial is therefore not accounted for. No erosion occurs prior to glaciation or subsequent to deposition.

In the incomplete exposure model each boulder is exposed to cosmic rays prior to glacial erosion and deposition. Each boulder group is assigned a random duration of prior exposure between zero and a maximum value, implying that all boulders from a certain group were derived from a landscape with the same exposure history. However, before erosion and entrainment by ice, each individual sample is assigned a random depth beneath the bedrock surface between zero and a maximum depth. The prior exposure for these boulders is therefore a function of the landscape exposure history and the depth beneath the surface from which they were mined. Calculation of the apparent exposure age acquired prior to deposition is based on the depth-dependent 10Be production rate due to spallation (Lal, 1991) and muon interaction (Granger and Smith, 2000), assuming a bedrock density of 2.7 g cm$^{-3}$. Each boulder group is assigned a random deglaciation (deposition) age which is added to the prior exposure component. The random deglaciation age varies between 0 and 250 ka, thus reflecting the range of measured boulder group minimum exposure ages (Fig. 4a). The duration of glaciation (period of shielding) between bedrock erosion and boulder deposition is assumed to be short-lived in comparison with the 10Be half-life (1.387 Ma) and 10Be decay during ice burial is therefore not accounted for. No erosion occurs prior to glaciation or subsequent to deposition.

In the incomplete exposure model each boulder is fully shielded prior to deposition and therefore acquires an apparent exposure age of zero at deglaciation. Each boulder group is assigned a random deglaciation (deposition) age between 0 and 450 ka, thus reflecting the range of all but one measured boulder group maximum exposure ages (Fig. 4a). In this model, all boulders are shielded to some degree because they start at some random depth below the surface at the...
time of deposition. Hence, each boulder is assigned a random burial depth in till (density of 2.0 g cm\(^{-3}\)) between zero and a maximum depth based on the deglaciation age and a time-dependent exhumation rate. All samples are exhumed following the same exhumation rate decreasing exponentially with time, based on the assumption of diffusion moraine degradation (Applegate et al., 2010; Hallet and Lehmkuhl, 2005; Owen et al., 2008). The vast majority of the Tibetan Plateau boulders (n = 1420) are collected from moraine ridges formed by valley/outlet glaciers, and their apparent exposure ages range from 0.09±0.05 ka to 561.7±54.8 ka (Fig. 2d). The areas formerly glaciated by the Northern Hemisphere palaeo-ice sheets (Fig. 2b,c) as late as 8–25 ka ago (Dyke et al., 2003; Gyllencreutz et al., 2003) have been sampled for glacial boulders (Fig. 2b,c) as late as 8–25 ka ago (Dyke et al., 2003; Gyllencreutz et al., 2003). The vast majority of the Tibetan Plateau boulders (n = 1420) are collected from moraine ridges formed by valley/outlet glaciers, and their apparent exposure ages range from 0.09±0.05 ka to 561.7±54.8 ka (Fig. 2d). The areas formerly glaciated by the Northern Hemisphere palaeo-ice sheets (Fig. 2b,c) as late as 8–25 ka ago (Dyke et al., 2003; Gyllencreutz et al., 2003).
third dataset (n = 208) is derived from 31 present-day glaciers and their late Holocene moraines (≤ 4 ka) and has apparent exposure ages up to 3.5 ± 0.4 ka (Fig. 2f).

One consistent result is that none of the 208 boulders from recent glaciers have experienced substantial prior exposure (Fig. 2f). Using average Quaternary climate arguments for spatial and temporal glacier and ice sheet extents (Kleman and Stroeven, 1997; Kleman et al., 2008; Porter, 1989), boulders that were entrained by recent glaciers should only have been exposed for limited durations prior to entrainment because the recent geological history of currently glaciated areas has been dominated by glacial coverage. However, another expectation is that the highest likelihood of encountering glacial boulders with cosmogenic inheritance is in situations where long periods of exposure were punctuated by brief periods of ice burial. Such conditions existed for extensive marginal areas covered by the Northern Hemisphere palaeo-ice sheets, which were at their maximum extents for only limited durations (Kleman et al., 2008; Porter, 1989). Hence, glacial boulders from these areas should represent maximum likelihood samples for prior exposure.

The palaeo-ice sheet dataset with 10Be exposure ages and corresponding reconstructed deglaciation ages allow estimation of the amount and likelihood of prior exposure (Fig. 3a; Supplementary Dataset). The exposure age pattern resulting from these boundary conditions bears a poor resemblance to the measured data (Fig. 4a,b; Supplementary Fig. S5) have minimum exposure ages ranging from 0 ka to 246 ka, and maximum exposure ages ranging from 0 ka to 562 ka. The oldest maximum exposure age for each group increases rapidly with group minimum exposure age from 51 ka to 287 ka for group minimum exposure ages between 1 ka and 18 ka, and the youngest minimum exposure age for each group increases moderately with group maximum exposure age from 1 ka to 106 ka for group maximum exposure ages between 51 ka and 449 ka (Fig. 4a; Supplementary Dataset). Exposure age spreads within the boulder groups, represented by group exposure age standard deviation, range from 0 ka to 174 ka and increase with both group maximum and minimum exposure ages (Fig. 4b; Supplementary Dataset). These measured boulder group exposure age properties were used to evaluate the exposure age Monte Carlo simulations against.

For the prior exposure model a number of simulations were performed with varying maximum duration of prior exposure and maximum prior sample depth. Figure 4c shows the exposure age pattern adopting a maximum duration of prior exposure of 150 ka and a maximum prior sample depth of 5 m. The 150 ka maximum prior exposure duration is based on exposure ages of bedrock surface samples collected from unglaciated areas on the Tibetan Plateau (Kong et al., 2007; Lal et al., 2003; Supplementary Fig. S7; Supplementary Dataset). The exposure age pattern resulting from these boundary conditions bears a poor resemblance to the measured data (Fig. 4c.d). The exposure age spread within the boulder groups is constant over the range of group minimum exposure ages resulting in too large an age spread for the youngest group minimum exposure ages and too small an age spread for the oldest group minimum exposure ages. The exposure age spread increases with group maximum exposure age but this increase is still significantly smaller than shown by the measured group maximum exposure ages. The poor performance of the model could potentially be an effect of the constant maximum prior exposure duration. Repeated glacial erosion over time with successively smaller glaciers (cf. Owen et al., 2010), removing the uppermost bedrock layers, may have resulted in decreased maximum prior exposure for younger glaciation boulders (cf. present-day glaciers dataset). However, with the duration of maximum prior exposure increasing linearly from 0 to 400 ka with deglaciation age, and a maximum prior sample depth of only 2 m to elicit high inheritance, the simulated group exposure age spread is still smaller than in the measured dataset for both group minimum and maximum exposure ages (Supplementary Fig. S8). In summary, adopting reasonable assumptions regarding prior exposure duration and sample depth does not allow the prior exposure model to successfully predict the measured exposure age pattern.

In the incomplete exposure model (Fig. 4e,f) an exponential exhaustion rate is adopted that starts at 11 cm ka⁻¹ at deglaciation and which yields 10.9 m of exhumation over 450 ka (Supplementary Dataset).
This time-dependent exhumation rate reflects the degradation of a small and slowly degrading moraine employing the diffusion model of Applegate et al. (2010). The incomplete exposure model reveals increasing group exposure age spreads for both group minimum and maximum exposure ages of similar magnitude as in the measured dataset (Fig. 4e,f). For group minimum exposure ages between 10 and 100 ka the simulated group exposure age spread is slightly higher than in the measured data whereas for the oldest group maximum exposure ages the simulated age spread is slightly lower than in the measured data. However, considering the simple structure of the model, including the same time-dependent exhumation rate for each boulder, the output captures the main characteristics of the measured data remarkably well.

The predictive power of the incomplete exposure model is significantly stronger than the predictive power of the prior exposure model (Fig. 4). This corroborates an interpretation of the Tibetan Plateau boulder exposure ages as altered by incomplete exposure more than by prior exposure. To further analyse the relative importance of the two competing geological factors, we have quantified the exposure age inaccuracy (relative to deglaciation age) for two idealised cases with either high inheritance or low inheritance using the coupled model (Fig. 5). In both cases the boulders are shielded from cosmic rays due to post-depositional exhumation following the time-dependent exhumation rate of the incomplete exposure model (Fig. 4e,f; Supplementary Fig. S5). The high inheritance model has a maximum prior exposure duration of 150 ka and a maximum prior sample depth of 5 m. The low inheritance model has a maximum prior exposure duration of 50 ka and a maximum prior sample depth of 10 m. Figure 5 shows the inaccuracies of simulated boulder group minimum, mean, and maximum exposure ages against deglaciation age. Comparing the model output for the deglaciation age range of 10–20 ka with the measured palaeo-ice sheet boulder group data (Fig. 3b), the relict boulder group exposure ages are best predicted by the high inheritance model while the glacial boulder group exposure ages are best predicted by the low inheritance model. The model results illustrate the stronger impact of incomplete exposure over prior exposure and the incomplete exposure dependence on deglaciation age. In the high inheritance model boulder group maximum exposure ages are more accurate than mean or minimum exposure ages for boulder groups older than 50 ka. In the low inheritance model boulder group maximum exposure ages are more accurate than mean or minimum exposure ages for boulder groups older than 10 ka. For a boulder group with a deglaciation age of 50–60 ka, the typical mean exposure age will be 10 ka too young using the high inheritance model and 16 ka too young using the low inheritance model. These results illustrate the potential pitfall in using mean exposure ages to infer deglaciation age for boulder groups with wide exposure age spread. Unless prior exposure and incomplete exposure have altered the cosmogenic nuclide concentrations of a boulder group
by equal amounts, which is arguably unlikely for boulder groups with wide exposure age spreads considering the diverse pre- and post-depositional geological processes, the mean exposure age will deviate from the deglaciation age.

The results of our analysis of three separate boulder exposure age datasets is distinct: incomplete exposure is generally more important than prior exposure implying that boulder exposure ages typically underestimate the deposition/deglaciation age. However, prior exposure appears to dominate in areas that have been preserved under non-erosive ice (cf. Briner et al., 2006a; Fabel et al., 2002) as illustrated by the palaeo-ice sheet relict boulder dataset (Fig. 3). Further, cosmogenic inheritance from prior exposure occasionally occur in boulders from glacially modified landscapes (cf. Balco et al., 2002; Owen et al., 2009; Rinterknecht et al., 2006) complicating exposure age interpretations. For cosmogenic dating applications our boulder exposure age compilation provides a reference dataset against which to evaluate expected exposure age accuracy.

4. Conclusions

The superior performance of the incomplete exposure model over the prior exposure model (Fig. 4) to explain the apparent exposure age structure of a comprehensive cosmogenic nuclide dataset from the Tibetan Plateau, combined with an absence of cosmogenic inheritance >3.5 ka in boulders from recent glaciers (Fig. 2f) and a low-frequency of inheritance in boulders from glacially-modified palaeo-ice sheet locations (Fig. 3) lends strong support to the argument that post-depositional shielding is the most important geological process leading to scatter in cosmogenic exposure ages for glacial boulder groups older than a few thousand years. Our analysis of global 10Be exposure ages indicates that apparent cosmogenic nuclide exposure ages for a majority of all glacial boulders represent minimum ages for deposition/deglaciation. For boulder groups with wide exposure age spreads, the maximum apparent exposure age should, in the absence of independent indications of prior exposure, normally be viewed as a minimum deglaciation age.

Acknowledgements

We thank everyone who has shared unpublished data for the exposure age compilation, Richard Gyllencreutz and Johan Kleman for providing deglaciation reconstructions, and Patrick Applegate and Lewis Owen for key improvements. We thank Greg Balco and an anonymous reviewer for constructive and helpful reviews. The exposure age simulations were carried out using Octave version 3.2.4 (http://www.octave.org/) with m-file codes that can also be executed in MATLAB. These m-files are available as supplementary files.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.epsl.2010.11.040.

References

Fig. 5. Simulated exposure age inaccuracy for coupled prior and incomplete exposure models. In the high inheritance model the prior exposure component is given by a maximum duration of prior exposure of 150 ka and a maximum prior sample depth of 5 m (cf. Fig. 4c,d). In the low inheritance model the prior exposure component is given by a maximum duration of prior exposure of 50 ka and a maximum prior sample depth of 10 m. For both the high and the low inheritance models the post-depositional shielding is given by the time-dependent exponential exhumation rate employed in the incomplete exposure model (cf. Fig. 4e,f; Supplementary Fig. S5). The exposure age inaccuracy (vertical axis) of the boulder group minimum, mean, and maximum exposure age (median and interquartile range) is shown against deglaciation age (horizontal axis) divided into 10 ka bins. Incomplete exposure is shown to be more important than prior exposure, with the boulder group maximum exposure age typically yielding the best accuracy (for all deglaciation ages >50 ka in the high inheritance model and >10 ka in the low inheritance model).

