Cosmogenic dating and complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

Natacha Gribenski1,2, Sven Lukas3, Krister N. Jansson1,2, Arjen P. Stroeven1,2, Frank Preusser4, Jonathan M. Harbor1,2,5, Robin Blomdin1,2, Mikhail N. Ivanov6, Jakob Heyman7, Dmitry Petrakov6, Alexei Rudoy8, Tom Clifton9, Nathaniel A. Lifton5,9, Marc W. Caffee5,9

1Department of Physical Geography, Stockholm University, Sweden. 2Bolin Centre for Climate Research, Stockholm University, Sweden. 3School of Geography, Queen Mary University of London, UK. 4Institute of Earth and Environmental Sciences - Geology, University of Freiburg, Germany. 5Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, USA. 6Cryolithology and Glaciology Department, Moscow State University, Russia. 7Department of Earth Sciences, University of Gothenburg, Sweden. 8Department Geology and Geography, National Research Tomsk State University, Russia. 9Department of Physics and Astronomy, and Purdue Rare Isotope Measurement Laboratory (PRIME Lab), Purdue University, USA

Corresponding author e-mail: Natacha.gribenski@natgeo.su.se

Abstract

Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion.

In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun Valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, and in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders.

The Chagan Uzun Valley includes extensive lobate moraine belts (>100 km²) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of “hillside-scale” folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by temperate alpine glaciers at balance velocity during recessional phases. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.2 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat.

This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.